Definitions and key facts for section 2.1

Recall a matrix A is an $m \times n$ rectangular array of numbers with m rows and n columns.
We label the entry of the i th row and j th column $a_{i j}$ and label the j th column \mathbf{a}_{j} so that

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 j} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & \vdots & & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{llllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{j} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[a_{i j}\right] \quad \text { where } \mathbf{a}_{j}=\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{i j} \\
\vdots \\
a_{m j}
\end{array}\right] .
$$

The diagonal entries of A are a_{11}, a_{22}, \ldots and they form the main diagonal of A. A matrix whose non-diagonal entries are zero is called a diagonal matrix.
A matrix with all zero entries is a zero matrix and is usually denoted by 0 .
The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} whose columns are the formed from the corresponding rows of A.

The algebra of matrices:

- two $m \times n$ matrices A and B are equal, written $A=B$, if their entries are equal;
- the sum two $m \times n$ matrices A and B is the matrix whose entries are the sum of the entries of A and B, written $A+B$;
- and the scalar multiple an $m \times n$ matrix A by a scalar c (a real number) is the matrix $c \mathbf{A}$ obtaining by multiplying each entry of A by c.

Basic algebraic properties: Let A, B and C be matrices of the same size and c, d be scalars.

1. $A+B=B+A$
2. $(A+B)+C=A+(B+C)$
3. $A+0=A$
4. $c(A+B)=c A+c B$
5. $(c+d) A=c A+d A$
6. $c(d A)=(c d) A$

Matrix multiplication

Given a $m \times n$ matrix A and a $n \times p$ matrix B,

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right] \quad B=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right]
$$

we define the product of A and B to be the following $m \times p$ matrix

$$
A B=A\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right]=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

Composition of linear transformations If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ are linear transformations with standard matrices A and B respectively, then

$$
T(S(\mathbf{x}))=A B \mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbb{R}^{p}
$$

Computing $A B$

We compute the product $A B$ by either of two methods:

- Using the definition, we compute each column of $A B$ as a linear combination of the columns of A using weights from the corresponding column of B.
- Using the row-column rule: if $(A B)_{i j}$ is the entry of $A B$ in the i th row and j th column then

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} .
$$

Properties of matrix multiplication: Let A be an $m \times n$ matrix, and let B and C have sizes such that the each following expression is defined.

1. $A(B C)=(A B) C$
2. $A(B+C)=A B+A C$
3. $r(A B)=(r A) B=A(r B)$
for any scalar r
4. $(B+C) A=B A+C A$
5. $I_{m} A=A=A I_{n}$

Warnings for matrix multiplication:
In general, a few familiar properties of multiplication do not hold for matrices:

1. In general, $A B \neq B A$.
2. In general, if $A B=A C$, that does not guarantee $B=C$.
3. If $A B=0$ we cannot conclude in general that either A or B is 0

If A is an $n \times n$ matrix, we define A^{k} to be the product of k-many copies of A

$$
A^{k}=\underbrace{A A \cdots A}_{k} \text { and } A^{0}=I_{n} .
$$

Properties of the transpose
With A and B of appropriate sizes, we have the following.

1. $\left(A^{T}\right)^{T}=A$
2. $(A+B)^{T}=A^{T}+B^{T}$
3. $(c A)^{T}=c A^{T}$ for any scalar c.
4. $(A B)^{T}=B^{T} A^{T}$.
