Definitions and key facts for section 2.1

Recall a **matrix** A is an $m \times n$ rectangular array of numbers with m rows and n columns. We label the entry of the *i*th row and *j*th column a_{ij} and label the *j*th column \mathbf{a}_j so that

	$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$	$a_{12} \\ a_{22}$	 	$\begin{array}{c}a_{1j}\\a_{2j}\end{array}$	 	$\begin{bmatrix} a_{1n} \\ a_{2n} \end{bmatrix}$						$\begin{bmatrix} a_{1j} \\ a_{2j} \end{bmatrix}$	
A =	$\begin{array}{c} \vdots \\ a_{i1} \end{array}$	\vdots a_{i2}	•. 	\vdots a_{ij}		\vdots a_{in}	$= [\mathbf{a}_1]$	$\mathbf{a}_2 \cdots$	\mathbf{a}_j	$\mathbf{a}_n \big] = \big[a_{ij} \big]$	where $\mathbf{a}_j =$	$\left \begin{array}{c} \vdots \\ a_{ij} \end{array}\right .$	
	$\begin{bmatrix} \vdots \\ a_{m1} \end{bmatrix}$	\vdots a_{m2}		$\vdots a_{mj}$	••. 	\vdots a_{mn}						$\begin{bmatrix} \vdots \\ a_{mj} \end{bmatrix}$	

The diagonal entries of A are a_{11}, a_{22}, \ldots and they form the main diagonal of A. A matrix whose non-diagonal entries are zero is called a diagonal matrix.

A matrix with all zero entries is a **zero matrix** and is usually denoted by 0.

The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose columns are the formed from the corresponding rows of A.

The algebra of matrices:

- two $m \times n$ matrices A and B are equal, written A = B, if their entries are equal;
- the sum two $m \times n$ matrices A and B is the matrix whose entries are the sum of the entries of A and B, written A + B;
- and the scalar multiple an $m \times n$ matrix A by a scalar c (a real number) is the matrix cA obtaining by multiplying each entry of A by c.

Basic algebraic properties: Let A, B and C be matrices of the same size and c, d be scalars.

$1. \ A + B = B + A$	$4. \ c(A+B) = cA + cB$
2. $(A+B) + C = A + (B+C)$	5. $(c+d)A = cA + dA$
3. $A + 0 = A$	6. $c(dA) = (cd)A$

Matrix multiplication

Given a $m \times n$ matrix A and a $n \times p$ matrix B,

 $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \qquad B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix}$

we define the **product** of A and B to be the following $m \times p$ matrix

 $AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$

Composition of linear transformations If $T : \mathbb{R}^n \to \mathbb{R}^m$ and $S : \mathbb{R}^p \to \mathbb{R}^n$ are linear transformations with standard matrices A and B respectively, then

$$T(S(\mathbf{x})) = AB\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^p .

Computing AB

We compute the product AB by either of two methods:

- Using the definition, we compute each column of AB as a linear combination of the columns of A using weights from the corresponding column of B.
- Using the row-column rule: if $(AB)_{ij}$ is the entry of AB in the *i*th row and *j*th column then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$$

Properties of matrix multiplication: Let A be an $m \times n$ matrix, and let B and C have sizes such that the each following expression is defined.

1.
$$A(BC) = (AB)C$$
4. $r(AB) = (rA)B = A(rB)$ 2. $A(B+C) = AB + AC$ for any scalar r 3. $(B+C)A = BA + CA$ 5. $I_mA = A = AI_n$

Warnings for matrix multiplication:

In general, a few familiar properties of multiplication **do not** hold for matrices:

- 1. In general, $AB \neq BA$.
- 2. In general, if AB = AC, that does not guarantee B = C.
- 3. If AB = 0 we cannot conclude in general that either A or B is 0

If A is an $n \times n$ matrix, we define A^k to be the product of k-many copies of A

$$A^k = \underbrace{AA \cdots A}_k$$
 and $A^0 = I_n$.

Properties of the transpose

With A and B of appropriate sizes, we have the following.

- 1. $(A^T)^T = A$
- 2. $(A+B)^T = A^T + B^T$
- 3. $(cA)^T = cA^T$ for any scalar c.
- 4. $(AB)^T = B^T A^T$.